Template:Intorient/doc
File:Edit-copy green.svg | This is a documentation subpage for Template:Terminate sentence It may contain usage information, categories and other content that is not part of the original template page. |
This template is used to include the oriented integrals around closed surfaces (or hypersurfaces in higher dimensions), usually in a mathematical formula. They are additional symbols to the non-oriented integrals \oiint and \oiiint which are not yet rendered on Wikipedia.
Arguments
- preintegral the text or formula immediately before the integral
- symbol the integral symbol,
Select one of... Arrow up, integrals over a closed Arrow down, integrals over a closed 1-surface 2-surface 3-surface 1-surface 2-surface 3-surface Clockwise
orientationoint=\oiint oiint=\oiint oiiint=\oiint varoint=\oiint varoiint=\oiint varoiiint=\oiint Counterclockwise
orientationointctr=\oiint oiintctr=\oiint oiiintctr=\oiint varointctr=\oiint varoiintctr=\oiint varoiiintctr=\oiint
- The default is \oiint
- intsubscpt the subscript below the integral
- integrand the text or formula immediately after the formula
All parameters are optional.
Examples
- The work done in a thermodynamic cycle on an indicator diagram: <math>W = </math> \varointclockwise<math>{\scriptstyle \Gamma}</math> <math>p \, {\rm d}V</math>
<source lang="tex"><math>W = </math> \varointclockwise<math>{\scriptstyle \Gamma}</math> <math>p \, {\rm d}V</math> </source>
- In complex analysis for contour integrals: \varointclockwise<math>{\scriptstyle \Gamma}</math> <math>\frac{{\rm d}z}{(z+a)^3 \, z^{1/2}}</math>
<source lang="tex"> \varointclockwise<math>{\scriptstyle \Gamma}</math> <math>\frac{{\rm d}z}{(z+a)^3 \, z^{1/2}}</math> </source>
- Line integrals of vector fields: \ointclockwise<math>{\scriptstyle \partial S}</math> <math>\mathbf{F} \cdot {\rm d}\mathbf{r} = -</math> \ointctrclockwise<math>{\scriptstyle \partial S}</math> <math>\mathbf{F} \cdot {\rm d}\mathbf{r}</math>
<source lang="tex"> \ointclockwise<math>{\scriptstyle \partial S}</math> <math>\mathbf{F} \cdot {\rm d}\mathbf{r} = -</math> \ointctrclockwise<math>{\scriptstyle \partial S}</math> <math>\mathbf{F} \cdot {\rm d}\mathbf{r}</math> </source>
- Other examples: \oiintclockwise<math>{\scriptstyle \Sigma}</math> <math>(E + H \wedge T) \, {\rm d}^2 \Sigma</math>
<source lang="tex"> \oiiintctrclockwise<math>{\scriptstyle \Sigma}</math> <math>(E + H \wedge T) \, {\rm d}^2 \Sigma</math> </source>
- \varoiiintctrclockwise<math>{\scriptstyle \Omega}</math> <math>(E + H \wedge T) \, {\rm d}^4 \Omega</math>
<source lang="tex"> \varoiiintctrclockwise<math>{\scriptstyle \Omega}</math> <math>(E + H \wedge T) \, {\rm d}^4 \Omega</math> </source>
See also
Non-oriented boundary integrals over a 2-surface and 3-surface can be implemented respectively by: